


54LS374/74LS374 LSTTL 型八 D 正沿触发器(三态)

特点: 逻辑图

- 三态总线驱动输出
- 置数全并行存取
- 缓冲控制输入
- 时钟输入有改善抗扰度的滞后作用

外引线排列图

功能表

	输 入		<i>4</i> A 111
输出控制	时钟	数据	1 出
<u>oc</u>	CLK	D	Q
L	↑	Н	Н
L	↑	L	L
L	L	×	Qo
H	×	×	Z
11	1 _ 低 由 亚	マーエウ	7-11円プ

H=高电平 L=低电平 \times =不定 Z=高阻态 ↑=从低转换到高电平 Q_0 =建立稳态输入条件前 Q 的电平

说明:

LS374 的八个触发器是边沿触发 D 型触发器。在时钟的正跳动,Q 输出将处于 D 输入端已建立的逻辑状态。

18

时钟线上的施密特触发缓冲输入将简化系统设计,因为输入滞后作用使交流和直流抗扰度一般提高 400mV。缓冲输出的控制输入将使八个输出处于正常状态(高电平或低电平)或处于高阻状态。在高阻态下,输出既不能有效地给总线加负载,也不能有效地驱动总线。

输出控制不影响触发器的内部工作,既老数据可以保持,甚至当输出被关闭,新的数据也可以置入。

KTTIC http://www.kttic.com

54LS374/74LS374 LSTTL 型八 D 正沿触发器(三态)

推荐工作条件

		74 II			54				
符号	参数名称	参数名称		参数值			参数值		
		最小	典型	最大	最小	典型	最大		
Vcc	电源电压	4.75	5	5. 25	4.5	5	5. 5	V	
V_{IH}	输入高电平电压		2.0			2.0			V
V_{IL}	输入低电平电压				0.8			0.7	V
I_{OH}	输出高电平电流				-2.6			-1	mA
I_{OL}	输出低电平电流				24			12	mA
t_{W}	时钟脉冲宽度	高	15			15			ns
	11777777777文	低	15			15			ns
t_{su}	数据建立时间		20 ↑			20 ↑			ns
$t_{\rm h}$	数据保持时间		0 ↑			0 ↑			ns
$T_{\mathbf{A}}$	工作环境温度		-40		85	-55		125	$^{\circ}\mathbb{C}$

电性能:(除特别说明外,均为全温度范围)

		测试条件		74 II			54			单位
符号	参数名称			参数值			参数值			
				最小	典型	最大	最小	典型	最大	
V_{IK}	输入钳位电压	Vcc=最小	$I_{I}=-18mA$			-1.5			-1.5	V
V_{OH}	输出高电平电压	Vcc=最小 V _{IH} =2V	V _{IL} =最大 I _{OH} =最大	2. 4	3. 1		2. 4	3. 4		V
V _{OL}	输出低电平电压	Vcc=最小 V _{IH} =2V	V _{IL} =最大 I _{OL} =最大	Ė	0. 35	0.5		0. 25	0. 4	V
I_{I}	输入电流 (最大输入电压时)	Vcc=最大	V _I =7V		4	0. 1			0. 1	mA
I_{IH}	输入高电平电流	Vcc=最大	$V_I=2.7V$			20			20	μΑ
$ m I_{IL}$	输入低电平电流	Vcc=最大	$V_{I} = 0.4V$			-0.4			-0.4	mA
I _{OZH}	高关态输出电流	Vcc=最大 Vo=2.7V	$V_I=2.0V$			20			20	μΑ
I _{OZL}	低关态输出电流	Vcc=最大 Vo=0.4V	V _I =2.0V			-20			-20	μΑ
I_{OS}	输出短路电流	Vcc=最大	V _O =0V	-30		-130	-30		-130	mA
I_{CC}	电源电流	Vcc=最大	(注)			40		27	40	mA

注: Icc 在输出控制端加 4.5V 时测量。

所有典型值均在 Vcc=5.0V, T_A=25℃下测量得出。

交流 (开关) 参数: Vcc=5.0V, T_A=25℃

符号	参数名称	从(输入)	到(输出)	测试条件	参数值			单位
11 7	多奴石你	/外 (相)/()	判へ制山ノ	例风矛门	最小	典型	最大	千亚
fmax	最大时钟频率				35	50		MHz
t_{PLH}	传输延迟时间	时钟				15	28	nc
$t_{ m PHL}$	传输延迟时间	CLK		$C_L=45pF$		19	28	ns
	传输延迟时间	输出控制Ѿ	任一Q			20	28	nc
t_{PZL}	传输延迟时间	制山江町00		$R_L=667 \Omega$		21	28	ns
	传输延迟时间	输出控制Ѿ		$C_L=5pF$		12	20	nc
$t_{\rm PLZ}$	传输延迟时间	和山江市100		$R_L=667\Omega$		14	25	ns