DESCRIPTION

The EUP2584A is a constant current step-up converter specifically designed to drive white LEDs. The Step-up converter topology allows series connection of the white LEDs so the LED currents are identical for uniform brightness. The EUP2584A switches at 1.1 MHz , allowing the use of tiny external components. The input and output capacitor can be as small as $1 \mu \mathrm{~F}$, saving space and cost versus alternative solutions. A low 0.3 V feedback voltage minimizes power loss in the current setting resistor for better efficiency. EUP2584A is enhanced with Soft-Start function and that could significantly reduce noise induced by capacitor.
The EUP2584A is available in low profile SOT23-6 package.

FEATURES

- 2.6 V to 5.5 V Input Range
- 27 V Output with Over Voltage Protection
- High Efficiency :85 \% Typical
- Internal Soft-Start
- PWM Dimming Control
- Internal High Power 30V MOSFET Switch
- Fast 1.1 MHz Switching Frequency
- Small, Low-Profile Inductors and Capacitors
- SOT23-6 Package
- RoHS Compliant and 100% Lead (Pb)-Free

APPLICATIONS

- Mobile Phone
- Digital Still Camera
- PDAs, Handheld Computers
- MP3 Players
- GPS Receivers

Typical Application Circuit

Figure 1. White LED Application

KTTIC http://www.kttic.com

Pin Configurations

Pin Description

PIN	SOT23-6	DESCRIPTION
EN	1	Chip Enable Pin. Connect to 1.4V or higher to enable device, 0.3 V or less to disable device.
OUT	2	Overvoltage Sense. When Vout is greater than 27V, the internal N-channel MOSFET turns off until V Vout drops below 25V, then the IC reenters start. Connect a 1uF capacitor from OUT to GND.
IN	3	Input Supply Voltage
LX	4	Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI.
GND	5	Common Ground
FB	6	Feedback Pin. Reference voltage is 0.3 V. Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula: $\mathrm{R}_{\text {FB }}=0.3 / \mathrm{L}_{\text {LED }}$

KTTIC http://www.kttic.com

EUP2584A

Ordering Information

Order Number	Package Type	Marking	Operating Temperature range
EUP2584AVIR1	SOT23-6	$\mathrm{fO} \square \square \square \square$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Block Diagram

Figure 2.

KTTIC http://www.kttic.com

EUP2584A

Absolute Maximum Ratings

- Supply Voltage , $\mathrm{V}_{\text {IN }}$---3V $\quad-0.3 \mathrm{~V}$

■ LX,OUT ---3V $\quad-0.30 \mathrm{~V}$

- The Other Pins --3V $\quad-0.3 \mathrm{~V}$ to
- Power dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOT23-6 0.4W
- Package Thermal Resistance SOT23-6, $\theta_{\text {J }}$ $250^{\circ} \mathrm{C} / \mathrm{W}$
- Maximum Junction Temperature $125^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10sec.) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Conditions

- Junction Temperature Range
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Supply Voltage, $\mathrm{V}_{\text {IN }}$
2.6 V to 5.5 V

Electrical Characteristics

$\left(\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=18 \mathrm{~V}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}\right.$, RSENSE $=15 \Omega, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Unless otherwise noted.
Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Conditions	EUP2584A			Unit
			Min	Typ	Max.	
	Supply Voltage	ग	--	--	6	V
UVLO	Under Voltage Lock Out	$\mathrm{V}_{\text {IV }}$ Rising	2.2	2.4	2.6	V
		$\mathrm{V}_{\text {IN }}$ Falling	1.95	2.15	2.35	
	Maximum Output Voltage	No Switching	--	--	30	V
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Continuous Switching	--	0.8	1.3	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Quiescent Current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{FB}=1.3 \mathrm{~V}$, No Switching	--	115	150	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 3}$	Shutdown current	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\text {EN }}<0.3 \mathrm{~V}$	--	0.1	1	$\mu \mathrm{A}$
Oscillator						
Fosc	Operation Frequency		0.8	1.1	1.3	MHz
Dmax	Maximum Duty Cycle		89	92	96	\%
Reference Voltage						
$V_{\text {FB }}$	Feedback Voltage		285	300	315	mV
MOSFET						
Rds (on)	On resistance of MOSFET		--	1	1.5	Ω
ILX	Current Limit		0.4	0.8	1.2	A
Control and Protection						
$\mathrm{V}_{\mathrm{EN} 1}$	Shutdown Voltage		0.3	0.7	--	V
$\mathrm{V}_{\text {EN2 }}$	Enable Voltage		--	0.7	1.4	V
$\mathrm{I}_{\text {EN }}$	EN Pin Pull Low Current		--	--	0.1	$\mu \mathrm{A}$
OVP	OVP Threshold	Falling	24.5	25.7	26.5	V
		Rising	26.1	27.3	28.1	

KTTIC http://www.kttic.com

EUP2584A

Typical Operating Characteristics

Efficiency vs. Vin (Driving 1WLED)

Efficiency vs. $V_{\text {IN }}$ (Driving 6WLEDs)

$\mathbf{V}_{\text {IN }}=$ 3.6V Driving 2LEDs Stability

Efficiency vs. $\mathbf{V}_{\text {IN }}$ (Driving 3WLEDs)

$\mathbf{V}_{\text {IN }}=\mathbf{2 . 6 V}$ Driving 2LEDs Stability

CHT 200m
CH3 5.00 V 玉 NH CH 200 mW W
$\mathbf{V}_{\text {IN }}=5 \mathrm{~V}$ Driving 2LEDs Stability

CH3 $5.00 \mathrm{~V} \mathrm{E}_{\mathrm{N}} \mathrm{CH} 4200 \mathrm{mV} \mathrm{E}, \mathrm{N}$

KTTIC http://www.kttic.com

$\mathrm{V}_{\text {IN }}=2.6 \mathrm{~V}$ Driving 6LEDs Stability

$\mathrm{CH} 200 \mathrm{~m} \mathrm{CH}^{2} \mathrm{CH} 2500 \mathrm{~m} \mathrm{CB}_{\mathrm{N}} \mathrm{M} 500 \mathrm{~ns}$

$\mathbf{V}_{\text {IN }}=5 \mathrm{~V}$ Driving 6LEDs Stability

$\mathrm{CH} 200 \mathrm{~m} v \mathrm{EW} \mathrm{CH} 250,0 \mathrm{~m} v \mathrm{EW}$ M 500 O 5
CH3 10,0 WEW CH4 500 mWE

KTTIC http://www.kttic.com

$\mathbf{V}_{\text {IN }}=$ 3.6V Driving 6LEDs Inrush Current

$V_{\text {IN }}=3.6 \mathrm{~V}$ Driving 6LEDs 1KHz PWM Dimming

$\mathbf{V}_{\text {IN }}=$ 3.6V Driving 4LEDs Inrush Current

$\mathrm{V}_{\text {IN }}=$ 3.6V Driving 6LEDs 100 Hz PWM Dimming

$V_{\text {IN }}=$ 3.6V Driving 6LEDs 10 KHz PWM Dimming

$\mathrm{V}_{\mathrm{IN}}=$ 3.6V Driving 6LEDs 100 KHz PWM Dimming

Application Information

LED Current Control

The EUP2584A regulates the LED current by setting the current sense resistor (R2) connecting to feedback and ground. The internal feedback reference voltage is 0.3 V . The LED current can be set from following equation easily.
$\mathrm{R} 2=0.3 \mathrm{~V} / \mathrm{I}_{\text {LED }}$
In order to have an accurate LED current, precision resistors are preferred (1% is recommended). The table for R2 selection is shown below.

R2 Resistor Value selection	
$\mathrm{I}_{\text {LED }}(\mathrm{mA})$	$\mathrm{R} 2(\Omega)$
5	60
10	30
12	25
15	20
20	15

Inductor Selection

The recommended value of inductor for 2 to 6 WLEDs applications are 4.7 to $22 \mu \mathrm{H}$. Small size and better efficiency are the major concerns for portable device, such as EUP2584A used for mobile phone. The inductor should have low core loss at 1.1 MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.

Dimming Control

a. Using a PWM Signal to EN Pin

For controlling the LED brightness, the EUP2584A can perform the dimming control by applying a PWM signal to EN pin. The internal soft-start and wide range dimming frequency from 100 Hz to 100 KHz can insignificantly reduce audio noise when dimming. The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly.

Figure 3. PWM Dimming Control Using the EN Pin

b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 4. According to the Superposition Theorem, as the DC voltage increases, the voltage contributed to V_{FB} increases and the voltage drop on R2 decreases, i.e. the LED current decreases. For example, if the V_{DC} range is from 0 V to 2.8 V , the selection of resistors in Figure 4 sets dimming control of LED current from 20 mA to 0 mA .

Figure 4. Dimming Control Using a DC Voltage

c. Using a Filtered PWM signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown in the Figure 6. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple $(<100 \mathrm{mV})$, the recommended frequency of 2.8 V PWM signal should be above 2 kHz . To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. According to the application circuit of Figure 5, output current is from 20.5 mA to 5.5 mA by adjusting the PWM duty cycle from 10% to 90%.

Figure 5. Filtered PWM Signal for LED Dimming Control

Constant Output Voltage for Backlight of Main Panel and Flashlight

Figure 6 is an application of EUP2584A for backlight of main panel and flashlight. Setting the divider-resistors (R1 \& R2) is to get a constant output voltage that depends on the forward voltage and the numbers of series-LEDs. There are three kinds of mode controlled by the switches - backlight mode /flashlight mode /backlight + flashlight mode. It can turn on backlight or flashlight at one time or both at the same time. Applying different duty cycle of PWM signal above 22 kHz to backlight's switch can also control the brightness. The following formula (2)(3) can determine R3 and R4.
$\mathrm{R} 3=\frac{\mathrm{V}_{\mathrm{OUT}}-3 \mathrm{VFb}-\mathrm{V}_{\mathrm{DS}}}{\mathrm{Ib}}$
$\mathrm{R} 4=\frac{\mathrm{V}_{\mathrm{OUT}}-3 \mathrm{VFf}-\mathrm{V}_{\mathrm{DS}}}{\text { If }}$
$\mathrm{V}_{\mathrm{DS}}=\mathrm{Ib} \times \mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$

Constant Output Voltage for Backlight of Main Panel and Keypad

Figure 7 is another application of EUP2584A for backlight and keypad. Setting the divider-resistors (R1 \& R2) is to get a constant output voltage that depends on the forward voltage and the numbers of series-LEDs. It can turn on backlight of main panel and keypad at the same time. Applying different duty cycle of PWM signal above 22 kHz to the backlight's switch can also control the brightness of main panel's backlight. The keypad's backlight will keep the same brightness during the dimming control of main panel. Otherwise the brightness of keypad's s backlight can also change during the dimming control of main panel by using the application circuit as figure 4 . The following formula (5)(6) can determine the resistors of Figure 8.

$$
\begin{align*}
& \mathrm{R} 3=\frac{\mathrm{V}_{\mathrm{OUT}}-3 \mathrm{VFb}-\mathrm{V}_{\mathrm{DS}}}{\mathrm{Ib}} \tag{5}\\
& \mathrm{R} 4=\mathrm{R} 5=\mathrm{R} 6=\frac{\mathrm{V}_{\mathrm{OUT}}-3 \mathrm{VFk}}{\mathrm{Ik}} \tag{7}
\end{align*}
$$

$\mathrm{V}_{\mathrm{DS}}=\mathrm{Ib} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$

Figure 6. Constant Output Voltage for Backlight and Flashlight

Figure 7. Constant Output Voltage for Backlight and Keypad

KTTIC http://www.kttic.com

EUP2584A

Packaging Information

SOT23-6

SYMBOLS	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	-	1.45	-	0.057
A1	0.00	0.15	0.000	0.006
b	0.30	0.50	0.012	
D	2.90		0.114	
E1	1.60		0.063	
E 0.95	0.037			
E	2.60	3.00	0.102	
L	0.3	0.60	0.012	0.118

