32V Step-Up Converters
 for Two to Nine White LEDs

DESCRIPTION

The EUP2595 is a constant current step-up converter specially designed for driving white LEDs. The step-up converter topology allows series connection of the white LEDs so the LED currents are identical for uniform brightness. The EUP2595 can drive 9 LEDs in series. The brightness of the LEDs can be adjusted through a voltage level on the CTRL pin or by applying a PWM signal to CRTL pin.
1 MHz current-mode, pulse-width modulated (PWM) operation allows for small input and output capacitors and a small inductor while minimizing ripple on the input supply/battery. Programmable soft-start eliminates inrush current during startup.
The EUP2595 is available in a space-saving, 8-pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ TDFN package.

FEATURES

- 2.6 V to 5.5 V Input Range
- 32V (max) Output with Overvoltage Protection
- Up to 90% Efficiency
- Flexible Analog or PWM Dimming Control
- Internal High Power MOSFET Switch
- $\quad<1 \mu \mathrm{~A}$ shutdown Current
- Fast 1 MHz PWM Operation
- Small, Low-Profile Inductors and Capacitors
- $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ TDFN- 8 Package
- RoHS Compliant and 100% Lead (Pb)-Free

APPLICATIONS

- Cell Phones and Smart Phones
- PDAs, Palmtops, and Wireless Handhelds
- e-Books and Subnotebooks
- White LED Display Backlighting

Typical Application Circuit

Figure 1. Typical Application Circuit

KTTIC http://www.kttic.com

EUP2595

Pin Configurations

Pin Description

PIN	Pin	DESCRIPTION
OUT	1	WLED output overvoltage sense pin. Add a $1 \mathrm{k} \Omega$ resistor to improve overvoltage sense accuracy.
IN	2	Input Supply Voltage.
CTRL	3	Brightness Control Input. LED brightness is controlled by the voltage applied to CTRL. Varying the voltage from 0.24V to 1.65V adjusts the brightness from dim to bright, respectively. Any voltage above 1.65V does not increase brightness.
CS	4	Current-Sense Feedback Input. Connect a resistor from CS to GND to set the LED bias current. The voltage at CS regulates to VCTRL / 5 or 0.330V, whichever is lower.
COMP	5	Compensation Input. Connect a $0.1 \mu \mathrm{~F}$ capacitor (CCOMP) from COMP to GND. CCOMP stabilizes the converter and controls soft-start. CCOMP discharges to GND when in shutdown.
GND	6	Common Ground. Connect to PGND and the exposed pad directly under the IC.
PGND	7	Power Ground. Connect to GND and the exposed pad directly under the IC.
LX	8	Inductor Connection. This pin is high impedance during shutdown.

KTTIC http://www.kttic.com

EUP2595

Ordering Information

Order Number	Package Type	Marking	Operating Temperature Range
EUP2595JIR1	TDFN-8	xxxxx $2595 A$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

EUP2595 $\square \square \square \square$

Lead Free Code
1: Lead Free 0: Lead

Packing
R: Tape \& Reel
Operating temperature range
I: Industry Standard
Package Type
J: TDFN-8

Block Diagram

Figure 2.

Absolute Maximum Ratings

- PGND to GND -0.3 V to 0.3 V
- LX,OUT to GND -0.3 V to 35 V
- CTRL to GND --. 3 V to the lower of 6 V or $\left(\mathrm{V}_{\text {IN }}+0.5 \mathrm{~V}\right)$
- COMP, CS to GND -0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
- I_{LX} 1A
- Thermal Resistance TDFN 8 - $50^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10sec.) $260^{\circ} \mathrm{C}$

Recommended Operating Conditions

- Operating Temperature Rang
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \operatorname{Lin}=22 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu, \mathrm{C}_{\text {OUT }}=0.1 \mu, \mathrm{C}_{\mathrm{COMP}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=13 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=1.5 \mathrm{~V}\right.$, $\mathbf{T A}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathbf{T A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.)

Parameter	Conditions	EUP2595			Unit
		Min	Typ	Max.	
Supply Voltage		2.6		5.5	V
UVLO Threshold	$V_{\text {IN }}$ Rising	2.23	2.40	2.60	V
	$\mathrm{V}_{\text {IN }}$ Falling	2.20	2.35	2.55	
UVLO Hysteresis	-		30		mV
Quiescent Current	No Switching, $\mathrm{V}_{\text {CTRL }}=\mathrm{V}_{\mathrm{CS}}=1 \mathrm{~V}$		350	700	$\mu \mathrm{A}$
Shutdown Supply Current	$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}+$, EN1 $=\mathrm{EN} 2=\mathrm{GND}$		0.15	1.50	$\mu \mathrm{A}$
OVLO Threshold	Rising	32	33.5	35	V
	Falling	30	31.3	32.8	
OVLO Hysteresis			2.20		V
OUT Input Bias Current	$\mathrm{V}_{\text {OUT }}=32 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}>0.24 \mathrm{~V}$		15	25	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}, \mathrm{CTRL}=\mathrm{GND}$			1	
Output Voltage Range		$\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{D}}$		32	V
ERROR AMPLIFIER					
CTRL to CS Regulation	$\mathrm{V}_{\text {CTRL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.6 \mathrm{~V}$ to 5.5 V	290	300	310	mV
CS Input Bias Current	$\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CTRL }} / 5$			1	$\mu \mathrm{A}$
CTRL Input Resistance	$0<\mathrm{V}_{\text {CTRL }}<1 \mathrm{~V}$	290	530	850	$\mathrm{k} \Omega$
CTRL Dual-Mode Threshold		125	190	245	mV
CS Maximum Brightness Clamp Voltage	$\mathrm{V}_{\text {CTRL }}=3 \mathrm{~V}$	310	330	347	mV
COMP Input Resistance to Ground	In Shutdown, UVLO or OVLO	12.8	23.3	35	$\mathrm{k} \Omega$

KTTIC http://www.kttic.com

EUP2595

Electrical Characteristics (Continued)

$\left(\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \operatorname{Lin}=22 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu, \mathrm{C}_{\text {OUT }}=0.1 \mu, \mathrm{C}_{\mathrm{COMP}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=13 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=1.5 \mathrm{~V}\right.$,
$\mathbf{T A}=-\mathbf{4 0}{ }^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathbf{T} \mathbf{A}=\mathbf{2 5}^{\circ} \mathbf{C}$.)

Parameter	Conditions	EUP2595			Unit
		Min	Typ	Max.	
CS-to-COMP Transconductance	Vcomp=1V	20	52	85	$\mu \mathrm{~S}$

OSCILLATOR

Operating Frequency		0.78	1	1.25	MHz
Minimal Duty Cycle	PWM Mode		12		$\%$
	Pulse Skipping		0		
Maximum Duty Cycle	CTRL=IN, CS=GND	93.5	95	97.2	$\%$
N-CHANNEL SWITCH		0.35	0.86	1.40	Ω
LX On-Resistance	Vlx=32V, CTRL=GND			1	$\mu \mathrm{~A}$
LX Leakage Current	Maximum Duty Cycle	550	1150	1720	mA
LX Current Limit					

KTTIC

KTTIC http://www.kttic.com

EUP2595
Typical Operating Characteristics

LED CURRENT vs
DIRECT-PWM DIMMING

SOFT-START AND SHUTDOWN

EFFCIENCY VS LED CURRENT

SWITCHING WAVEFORMS

CTRL STEP RESPONSE

KTTIC http://www.kttic.com

Application Information

Soft-Start

The EUP2595 attain soft-start by charging COMP gradually with a current source. When $\mathrm{V}_{\text {COMP }}$ rises above 1.25 V , the internal MOSFET begins switching at a reduced duty cycle. When $\mathrm{V}_{\text {Comp }}$ rises above 2.25 V , the duty cycle is at its maximum. See the Typical Operating Characteristics for an example of soft-start operation.

Shutdown

The EUP2595 enter shutdown when $\mathrm{V}_{\text {CTRL }}$ is less than 100 mV for more than 8.2 ms . In shutdown, supply current is reduced to $0.3 \mu \mathrm{~A}$ by powering down the entire IC except for the CTRL voltage-detection circuitry. $\mathrm{C}_{\text {COMP }}$ is discharged during shutdown, allowing the device to reinitiate soft-start when it is enabled. Although the internal N-channel MOSFET does not switch in shutdown, there is still a DC current path between the input and the LEDs through the inductor and Schottky diode. The minimum forward voltage of the LED array must exceed the maximum input voltage to ensure that the LEDs remain off in shutdown. However, with two or more LEDs, the forward voltage is large enough to keep leakage current low, less than $1 \mu \mathrm{~A}(\mathrm{typ})$. Typical shutdown timing characteristics are shown in the Typical Operating Characteristics.

Overvoltage Protection

Overvoltage lockout (OVLO) occurs when V Vut is above 32 V .The protection circuitry stops the internal MOSFET from switching and causes $\mathrm{V}_{\text {Comp }}$ to decay to 0 V . The device comes out of OVLO and into softstart when $\mathrm{V}_{\text {OUT }}$ falls below 2.2 V .

Adjusting LED Current

Adjusting the EUP2595 output current changes the brightness of the LEDs. An analog input (CTRL) and the sense-resistor value set the output current. Output current is given by:
$\mathrm{I}_{\text {LED }}=\frac{\mathrm{V}_{\text {CTRL }}}{5 \times \mathrm{R}_{\text {SENSE }}}$

The $\mathrm{V}_{\text {CTRL }}$ voltage range for adjusting output current is 0.24 V to 1.65 V . To set the maximum current, calculate RSENSE when $\mathrm{V}_{\mathrm{CTRL}}$ is at its maximum as follows:
$\mathrm{R}_{\text {SENSE }}=\frac{1.65 \mathrm{~V}}{5 \times \mathrm{I}_{\text {LED }(\mathrm{MAX})}}$

Power dissipation in RSENSE is typically less than 10 mW , making a standard chip resistor sufficient.

PWM Dimming Control

CTRL is also used as a digital input allowing LED brightness control with a logic-level PWM signal applied directly to CTRL. The frequency range is from 200 Hz to 200 kHz , while 0% duty cycle corresponds to zero current and 100% duty cycle corresponds to full current. The error amplifier and compensation capacitor form a lowpass filter so PWM dimming results in DC current to the LEDs without the need for any additional RC filters; see the Typical Operating Characteristics.

Capacitor Selection

The exact values of input and output capacitors are not critical. The typical value for the input capacitor is $2.2 \mu \mathrm{~F}$ and the typical value for the output capacitor is $0.1 \mu \mathrm{~F}$. Larger value capacitors can be used to reduce input and output ripple, but at the expense of size and higher cost. $\mathrm{C}_{\text {COMP }}$ stabilizes the converter and controlls soft-start. Connect a $0.1 \mu \mathrm{~F}$ capacitor from COMP to GND. For stable operation, Cout must not exceed 10 times $\mathrm{C}_{\text {Comp. }}$

Inductor Selection

Inductor values range from $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$. A $22 \mu \mathrm{H}$ inductor optimizes the efficiency for most applications while maintaining low $15 \mathrm{mV} V_{\text {P-P }}$ input ripple. With input voltages near 5 V , a larger value of inductance can be more efficient. To prevent core saturation, ensure that the inductor-saturation current rating exceeds the peak inductor current for the application. Calculate the peak inductor current with the following formula:

$$
\begin{aligned}
& \mathrm{I}_{\text {PEAK }}=\frac{\mathrm{V}_{\mathrm{OUT}}(\mathrm{MAX}) \times \mathrm{I}_{\mathrm{LED}(\mathrm{MAX})}}{0.9 \times \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}} \\
& +\frac{\mathrm{VIN}(\mathrm{MIN}) \times 0.9 \mu \mathrm{~s}}{2 \times \mathrm{L}}
\end{aligned}
$$

Schottky Diode Selection

The EUP2595 high switching frequency demands a high-speed rectification diode (D1) for optimum efficiency. A Schottky diode is recommended due to its fast recovery time and low forward-voltage drop. Ensure that the diode's average and peak current rating exceed the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed $V_{\text {OUT }}$. The RMS diode current can be calculated from:
$\operatorname{IDIODE}(\mathrm{RMS}) \cong \sqrt{\text { IOUT } \times \text { IPEAK }}$

KTTIC http://www.kttic.com

PC Board Layout

Due to fast switching waveforms and high-current paths, careful PC board layout is required. An evaluation kit is available to speed design.

When laying out a board, minimize trace lengths between the IC and $\mathrm{R}_{\text {SENSE }}$, the inductor, the diode, the input capacitor, and the output capacitor. Keep traces short, direct, and wide. Keep noisy traces, such as the LX node trace, away from CS. The IN bypass capacitor (C_{IN}) should be placed as close to the IC as possible. PGND and GND should be connected directly to the exposed paddle underneath the IC. The ground connections of $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$ should be as close together as possible. The traces from IN to the inductor and from the Schottky diode to the LEDs may be longer.

Figure 3. Typical Operating Circuit 21 WLEDs

KTTIC http://www.kttic.com

EUP2595

Packaging Information

TDFN-8

DETAIL A
Thermal Pad Option

SYMBOLS	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	0.70	0.80	0.028	0.031
A1	0.00	0.05	0.000	0.002
b	0.20	0.40	0.008	0.016
D	2.90	3.10	0.114	0.122
D1	2.30		0.090	
E	2.90	3.10	0.114	0.122
E1	1.50		0.059	
e 0.65	0.026			
L	0.25	0.45	0.010	0.018

