KTTIC http://www.kttic.com OKS12B5 使用说明书

一. 引脚排列及性能简介

PIN	▼ 排列		1		PIN 描述
NC	1	40	Vcc	A0-A23	-Address input
NC	2	39	A23	CE	-Chip Enable (Low Enable)
A2	3	38	Vcc	GND	-Ground
A1	4	37	A21	DQ0-	-Data In/Out
A1	5	36	A22	Vcc	-Power(+5V)
A1	6	35	A15	WE	-WriteEnable (LowEnable)
A1	7	34	A17	OE	-OutputEnable(LowEnable)
A1	8	33	WE	NC	-No Connect
Α	9	32	A13		
Α	10	31	A8		
Α	11	30	A9		
Α	12	29	A11		
Α	13	28	OE		
Α	14	27	A10		
Α	15	26	CE		
Α	16	25	DQ7		
DQ	17	24	DQ6		
DQ	18	23	DQ5		
DQ	19	22	DQ4		
GN	20	21	DQ3	100	T

带软件口令的非易失性存储器 OKS 12B5 在引脚排列上与普通 SRAM,EEPROM 及通用 NVRAM 无异,只是它在通用 NVRAM 即由锂电池及抗干扰电路和 SRAM 组成的基础上在写信号上增加了软件锁功能。当用户要向此 SNVRAM 内存入数据时,先要打开写信号上的锁开放片内写信号,此指令为向此芯片最后一个单元写入 88 这个数此时 88 并未真的存入此芯片的最后一个单元,这只是一个开锁指令)而当用户写完数据后,再向最后一个单元写入非 88 的数即可将写信号锁死,任凭外部干扰怎样也不能打开写 信号,从而达到可靠保存数据的目的。同时原来通用 NVRAM 保存数据的功能即由监测电路监视 Vcc当其上下电≤4.35V 时自动拉高片内片选信号,使数据自动保护的功能此 SNVRAM 一样具备。

二、读取模式

OKS12B5 在 WE(写使能)被禁止(high)且 CE(片选)被选中(Low)并且 OE(读信号被使能Low 执行一次读循环 24 个地址输入线 A_0 - A_{23}) 指定的唯一的地址定义将要被访问。最后输入信号稳定后 8 位数据输出驱动 器将在 t_{ACC} 时序内得到有效数据。

KTTIC _http://www.kttic.com

要向 OKS12B5 写数据,就先要打开放写信号,这就需要先发出一个向 OKS12B5 最后两个字节即最高字节写入 88 的指令。在写信号开放后,片内 SRAM 的写信号随外部写信号引脚的变化而变化,否则片内写信号被置 高不能写入数据。在写信号开放后,地址输入稳定后,OKS12B5 在 WE 和 CE 信号处于 激活(低电平)状态为写模式。最后出现的 CE 或 WE 下降沿 将决定写循环的 开始,写循环终止于 CE 或 WE 前边的上升边沿。在写循环 内所有地址输入必须 保持有效。在下一个循环能被初始化前,WE 写信号必 须将高电平保持最少记录时间(twr).写循环期间 OE 控制信号应当保持失 效(高电平)避免总线冲突,如 果输出总线已经有效(CE 和 OE 激活则写信号可以在 topw 时序内从下降边沿开始禁止输出。

四、数据保存模式

OKS12B5 为 Vcc 提供全部功能当 V_{CC} 大于 4.5 伏或 4.75 伏,写保护为 4.35 伏或 4.75 伏。当 Vcc 掉电时保存数据,没有任何附加支持电路的需要。 HK12B5 通常监视 Vcc。如果电源电压降低,RAM 自动写保护其本身。所 有对 RAM 的输入变为"不接收",所有输出为高电阻。当 Vcc 降低到大约 3.0 伏时,电源转换电路将用锂电源向 RAM 供电保存数据。电压升高时,当 Vcc 升高到大约 3.0 伏时,电压转换电路将外部 Vcc 与 RAM 连接。正常 RAM 操作在 Vcc 超过 4.5 伏或 4.75 伏后能够重新开始。同时 OKS12B5 还提供了软件锁死功能,即在用户完成写入数据的操作后,只需向该芯片 最后一个单元写入一个非 88 的数,如 99,03 等,片内 SRAM 的写信号被 锁死,不论外部写信号怎样都不能向片内存入数据,从而大大提高了芯片 的可靠性。

五、出厂状态及运输

OKS12B5 从半导体出厂均保证满电量。运输及使用中的重力加速度不应超出 1.5G 否则影响寿命。

六、验收及服务

本产品验收期为1个月即自客户得到本产品后对以下各项性能指标进行验 收,如果异议应在1个月内提出更换或退货。质量保证期即服务期为一年,如产品在一年内非使用问题而产生的产品质量问题并且未经使用损坏的经 我公司检验认可可以给予更换。我公司拥有对以上条款的最终解释权。

七、各项指标

① 最大范围

各脚对地电压 -0.3~5.0V 储存温度 -40℃~70℃

焊接温度 200℃不能超过 5 秒

操作温度 0℃~55℃ 准工业级 0℃~70℃ 工业

级-40°C~70°C

注:长期暴露在工作在以上最大范围下将影响使用周期

②推荐操作条件

 $(0^{\circ}\text{Cto}70^{\circ}\text{C})$

		`	,			
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	
Power Supply Voltage (OKS12B5)	VCC	4.5	5.0	5,5	V	
Power Supply Voltage (OKS12B5N)	VCC	4.75	5 .0111	O.5.25/V	NWKII	ıc.com
Logic 1	VIH	2.2	_	Vcc	V	

KTTIC http://www.kttic.com

(0°Cto70°C;Vcc=5V±10%)

OTT 012 12	(0 000	,, o e , .	• • • • • • • • • • • • • • • • • • • •	, . ,	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Input Leakage Current	LIL	-5.0	_	+5.0	m
I/O Leakage Current CE≥VIH≤VCC	I IO	-5.0	_	+5.0	m
Output Current @2.4V	IOH	-1.0	_	_	m
Output current @0.4V	I OL	2.0	_	_	m
Standby Current CE=2.2V, CE2=0V	I CCS1		5.0	10.0	m
Standby Current CE=Vcc-0.5V, CE2=0V	I CCS2		3.0	5.0	m
Operating Current	I CCO1		5	45	m
Write Protection Voltage (OKS12B5)	VTP	4.25	4.37	4.5	V
Write Protection Voltage (OKS12B5N)	VTP	4.5	4.75	4.85	V

④读写电特性 (0℃to70℃;Vcc=5V±10%)

包读可电 的 II			(0 C 10 70 C, V CC - 3 V ± 10 70)						
PARAMETER	SYM	OKS12B5-70		OKS12B5-85		OKS12B5-100		UNITS	NOTES
FARAIVILIER		MIN	MAX	MIN	MAX	MIN	MA	UNITS	NOTES
Read Cycle Time	tRC	70	_	85	_	100	_	ns	_
Access Time	tACC	_	70	_	85	_	10	ns	_
OE to Output Valid	tOE	_	35	_	45	_	50	ns	
OE to Output Valid	tCO	_	70	_	85	_	10	ns	_
OE or CE Output Active	tCOE	5	_	5	_	5	_	ns	5
Output High Z from Dissection	tOD	_	25	_	30	_	35	ns	5
Output Hold from dress Change	tOH	5	_	5	_	5	_	ns	
Write Cycle Time	tWC	70	_	85	_	100	_	ns	_
Write Pulse Width	tWP	55	_	65	_	75	_	ns	3
Address Setup Time	tAW	0		0		0		ns	
Write Deceyory Time	tWR1	5		5		5		ns	
Write Recovery Time	tWR2	15	_	15	_	15	_		
Output High Z from WE	tODW	_	25	_	30	_	35	ns	5
Output Active from WE	tOEW	5		5	_	5	_	ns	5
Data Setup Time	tDS	30	_	35	_	40	_	ns	4
Data Hold Time	tDH1 tDH2	0 10		0 10		0 10		ns	

⑤建议电源上下电时间

SYM	PARAMETER	MIN	MAX	UNITS	NOTE
tPD	CE at VIH before Power-Down	10	_	μs	_
tF	Vcc Slew from 4.5v to 0v(CE at VIH)	300	_	μs	_
tR	Vcc Slew from 0v to 4.5v(CE at VIH)	0	20	μs	_
tREC	CE WE at VIH after Power-Up	20	125	m	_

(T_A=25°C)

SYM	PARAMETER	MIN	TYP	MAX	UNITS	NOTE
t DR	Expected Data Retention Time	_	10		years	9,10