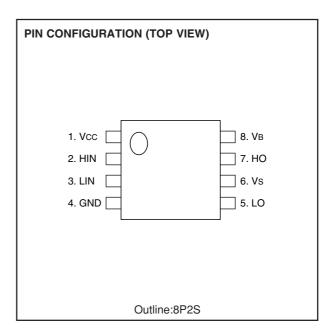
Notice: This is not a final specification. Some parametric limits are subject to change.

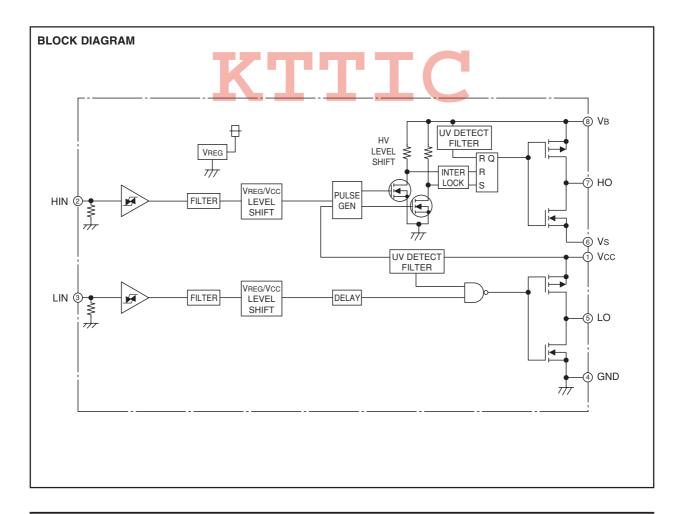
MITSUBISHI SEMICONDUCTORS < HVIC>

M81719FP

HIGH VOLTAGE HALF BRIDGE DRIVER

DESCRIPTION


M81719FP is high voltage Power MOSFET and IGBT module driver for half bridge applications.


FEATURES

- FLOATING SUPPLY VOLTAGE600V
- OUTPUT CURRENT +120mA/-250mA
- HALF BRIDGE DRIVER
- UNDERVOLTAGE LOCKOUT
- SOP-8 PACKAGE

APPLICATIONS

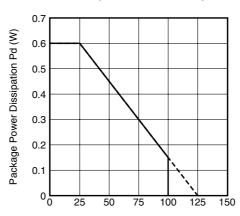
MOSFET and IGBT module inverter driver for Automotive, PDP, HID lamp, refrigerator, air-conditioner, washing machine, AC-servomotor and general purpose.

MITSUBISHI SEMICONDUCTORS < HVIC>

M81719FP

HIGH VOLTAGE HALF BRIDGE DRIVER

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C unless otherwise specified)


Symbol	Parameter	Test conditions	Ratings	Unit
VB	High Side Floating Supply Absolute Voltage		-0.5 ~ 624	V
Vs	High Side Floating Supply Offset Voltage		VB-24 ~ VB+0.5	V
VBS	High Side Floating Supply Voltage	VBS = VB-VS	-0.5 ~ 24	V
Vно	High Side Output Voltage		Vs-0.5 ~ VB+0.5	V
Vcc	Low Side Fixed Supply Voltage		-0.5 ~ 24	V
VLO	Low Side Output Voltage		-0.5 ~ Vcc+0.5	V
VIN	Logic Input Voltage	HIN, LIN	-0.5 ~ Vcc+0.5	V
Pd	Package Power Dissipation	Ta = 25°C, On Board	0.6	W
$K\theta$	Linear Derating Factor	Ta > 25°C, On Board	6.0	mW/°C
Rth(j-c)	Junction-Case Thermal Resistance		50	°C/W
Tj	Junction Temperature		− 20 ~ 125	°C
Topr	Operation Temperature		− 20 ~ 100	°C
Tstg	Storage Temperature		− 40 ~ 125	°C

RECOMMENDED OPERATING CONDITIONS

O. mala al	Dt	To ak a sudiki sus	Limits			1.124
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VB	High Side Floating Supply Absolute Voltage		Vs+10	_	Vs+20	V
Vs	High Side Floating Supply Offset Voltage		0	_	500	V
VBS	High Side Floating Supply Voltage	VBS = VB-VS	10	_	20	V
Vно	High Side Output Voltage		Vs	_	Vв	V
Vcc	Low Side Fixed Supply Voltage		10	_	20	V
VLO	Low Side Output Voltage		0	_	Vcc	V
VIN	Logic Input Voltage	HIN, LIN	0	_	7	V

^{*} For proper operation, the device should be used within the recommended conditions.

THERMAL DERATING FACTOR CHARACTERISTIC (MAXIMUM RATING)

Temperature Ta (°C)

MITSUBISHI SEMICONDUCTORS < HVIC>

M81719FP

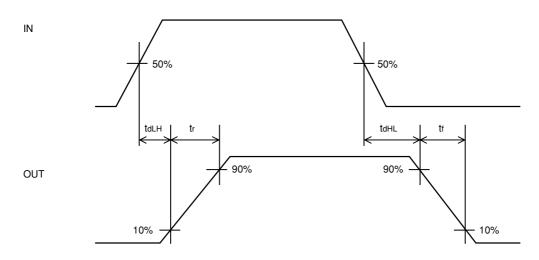
HIGH VOLTAGE HALF BRIDGE DRIVER

ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vcc = VBS (= VB-VS) = 15V, unless otherwise specified)

Symbol	Darameter	To all a significance	Limits			Llmia
Symbol	Parameter	Test conditions	Min.	Тур.*	Max.	Unit
IFS	Floating Supply Leakage Current	VB = VS = 600V	_	_	1.0	μΑ
IBS	VBS Standby Current	HIN = LIN = 0V	_	0.2	0.5	mA
Icc	Vcc Standby Current	HIN = LIN = 0V	0.2	0.6	1.0	mA
Vон	High Level Output Voltage	Io = -20mA, LO, HO	13.6	14.2	_	V
VoL	Low Level Output Voltage	Io = 20mA, LO, HO	_	0.3	0.6	V
VIH	High Level Input Threshold Voltage	HIN, LIN	2.7	_	_	V
VIL	Low Level Input Threshold Voltage	HIN, LIN	_	_	0.8	V
IIН	High Level Input Bias Current	VIN = 5V	_	5	20	μΑ
liL	Low Level Input Bias Current	VIN = 0V	_	_	2	μΑ
VBSuvr	VBS Supply UV Reset Voltage		8.0	8.9	9.8	V
VBSuvt	VBS Supply UV Trip Voltage		7.4	8.2	9.0	V
VBSuvh	VBS Supply UV Hysteresis Voltage		0.4	0.6	_	V
tVBSuv	VBS Supply UV Filter Time		_	7.5	_	μS
VCCuvr	Vcc Supply UV Reset Voltage		8.0	8.9	9.8	V
VCCuvt	Vcc Supply UV Trip Voltage		7.4	8.2	9.0	V
VCCuvh	Vcc Supply UV Hysteresis Voltage		0.4	0.6	_	V
tVCCuv	Vcc Supply UV Filter Time		_	7.5	_	μS
Іон	Output High Level Short Circuit Pulsed Current	VO = 0V, VIN = 5V, PW < 10μs**	120	200	_	mA
lol	Output Low Level Short Circuit Pulsed Current	VO = 15V, VIN = 0V, PW < 10μs**	250	350	_	mA
Rон	Output High Level On Resistance	IO = -20mA, ROH = (VOH-VO)/IO	_	40	70	Ω
RoL	Output Low Level On Resistance	IO = 20mA, ROL = VO/IO	_	15	30	Ω
tdLH(HO)	High Side Turn-On Propagation Delay	CL = 1000pF between HO-Vs	_	250	350	ns
tdHL(HO)	High Side Turn-Off Propagation Delay	CL = 1000pF between HO-Vs	_	250	350	ns
trH	High Side Turn-On Rise Time	CL = 1000pF between HO-Vs	_	130	220	ns
tfH	High Side Turn-Off Fall Time	CL = 1000pF between HO-Vs	_	50	80	ns
tdLH(LO)	Low Side Turn-On Propagation Delay	CL = 1000pF between LO-GND	_	250	350	ns
tdHL(LO)	Low Side Turn-Off Propagation Delay	CL = 1000pF between LO-GND	_	250	350	ns
trL	Low Side Turn-On Rise Time	CL = 1000pF between LO-GND	_	130	220	ns
tfL	Low Side Turn-Off Fall Time	CL = 1000pF between LO-GND	_	50	80	ns
Δt dLH	Delay Matching, High Side and Low Side Turn-On	tdLH(HO)-tdLH(LO)	_	0	30	ns
Δt dHL	Delay Matching, High Side and Low Side Turn-Off	tdHL(HO)-tdHL(LO)	_	0	30	ns
tinon	Input Filter Time (ON)	CONVEX PULSE	60	80	100	ns
	input Filter Time (ON)	CONCAVE PULSE	110	150	190	ns
tinoff	Input Filter Time (OFF)	CONVEX PULSE	60	80	100	ns
unon	Imput Filter fille (OFF)	CONCAVE PULSE	110	150	190	ns
ΔPWIO	I/O Pulse Width Difference	PW(IN)-PW(OUT)	_	_	100	ns

^{*} Typ. is not specified.

^{**} It is recommended not to input short pulse continuously.


MITSUBISHI SEMICONDUCTORS < HVIC>

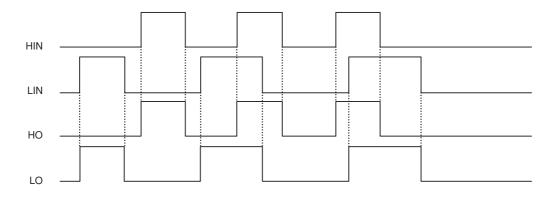
M81719FP

HIGH VOLTAGE HALF BRIDGE DRIVER

TIMING REQUIREMENT

FUNCTION TABLE (X: H or L)

HIN	LIN	VBS UV	Vcc UV	НО	LO	Behavioral state
L	L	Н	Н	L	L	LO = HO = Low
L	Н	Н	Н	L	Н	LO = High
Н	L	Н	Н	Н	L	HO = High
Н	Н	Н	Н	Н	Н	LO = HO = High
Х	L	L	Н		L	HO = Low, VBS UV tripped
Х	Н	L	Н	L	Н	LO = High, VBS UV tripped
L	Х	Н	L	L	L	LO = Low, Vcc UV tripped
Н	Х	Н	L	L	L	HO = LO = Low, Vcc UV tripped


Note: "L" state of VBS UV, VCC UV means that UV trip voltage.

TIMING DIAGRAM

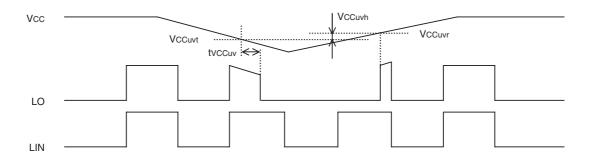
1.Input/Output Timing Diagram

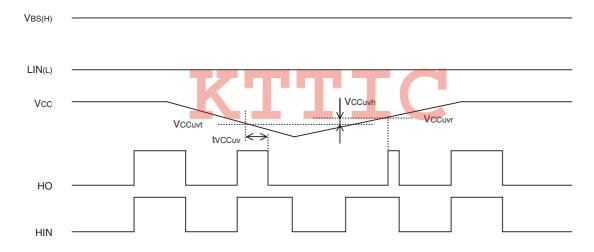
HIGH ACTIVE (When input signal (HIN or LIN) is "H", then output signal (HO or LO) is "H".)

Because there is not interlock circuit, in the case of both input signals (HIN and LIN) are "H", output signals (HO and LO) become "H".

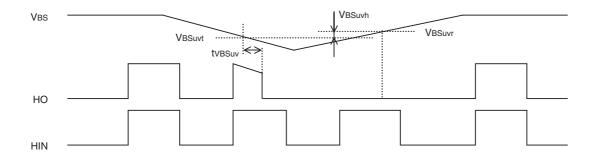
MITSUBISHI

MITSUBISHI SEMICONDUCTORS < HVIC>


M81719FP


HIGH VOLTAGE HALF BRIDGE DRIVER

2.Vcc (VBS) Supply Under Voltage Lockout Timing Diagram


When Vcc Supply Voltage keeps lower UV Trip Voltage (VcCuvt = VcCuvr-VcCuvh) for Vcc Supply UV Filter Time, output signal becomes "L". And then, when Vcc Supply Voltage is higher than UV Reset Voltage, output signal LO becomes "H".

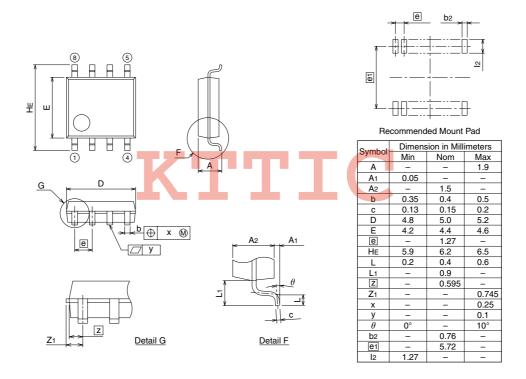
When Vcc Supply Voltage keeps lower UV Trip Voltage (Vccuvt = Vccuvr-Vccuvh) for Vcc Supply UV Filter Time, output signal becomes "L". And then, when Vcc Supply Voltage is higher than UV Reset Voltage, input signal (LIN) is L; output signal HO becomes "H".

When VBs Supply Voltage keeps lower UV Trip Voltage (VBSuvt = VBSuvr-VBSuvh) for VBs Supply UV Filter Time, output signal becomes "L". And then, VBs Supply Voltage is higher than UV Reset Voltage, output signal HO keeps "L" until next input signal HIN is "H".

MITSUBISHI SEMICONDUCTORS < HVIC>

M81719FP

HIGH VOLTAGE HALF BRIDGE DRIVER


3. Allowable Supply Voltage Transient

It is recommended that supplying Vcc firstly and supplying VBs secondly. In the case of shutting off supply voltage, shutting off VBs firstly and shutting off Vcc secondly. At the time of starting Vcc and VBs, power supply should be increased slowly. If it is increased rapidly, output signal (HO or LO) may be "H".

Consideration

As for this product, the terminal of low voltage part and high-voltage part is very clear (The Fifth: LO, The Sixth: Vs). Therefore, pin insulation space distance should be taken enough.

PACKAGE OUTLINE

