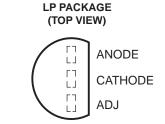

KTTIC http://www.kttic.com A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark INSTRUMENTS

www.ti.com

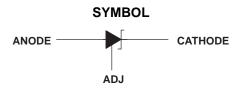
2.5-V INTEGRATED REFERENCE CIRCUIT


FEATURES

- Excellent Temperature Stability
- Initial Tolerance: 0.2% Max
- Dynamic Impedance: 0.6 Ω Max

NC - No internal connection

- Wide Operating Current Range
- Directly Interchangeable With LM136
- Needs No Adjustment for Minimum Temperature Coefficient


DESCRIPTION/ORDERING INFORMATION

The LT1009 reference circuit is a precision-trimmed 2.5-V shunt regulator featuring low dynamic impedance and a wide operating current range. The maximum initial tolerance is ± 5 mV in the LP package and ± 10 mV in the D and PW packages. The reference tolerance is achieved by on-chip trimming, which minimizes the initial voltage tolerance and the temperature coefficient, α_{VZ} .

Although the LT1009 needs no adjustments, a third terminal (ADJ) allows the reference voltage to be adjusted $\pm 5\%$ to eliminate system errors. In many applications, the LT1009 can be used as a terminal-for-terminal replacement for the LM136-2.5, which eliminates the external trim network.

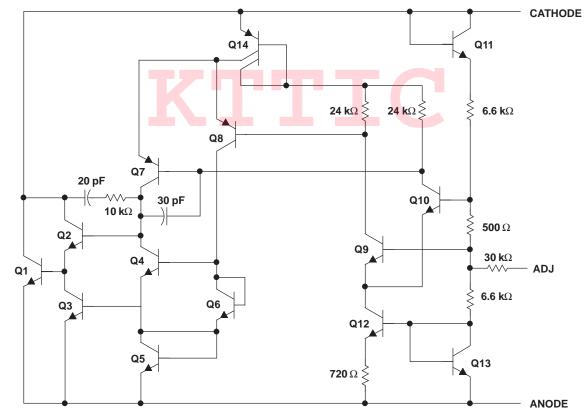
The LT1009 uses include 5-V system references, 8-bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) references, and power-supply monitors. The device also can be used in applications such as digital voltmeters and current-loop measurement and control systems.

The LT1009C is characterized for operation from 0°C to 70°C. The LT1009I is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS013N-MAY 1987-REVISED MAY 2009

SLVS013N-MAY 1987-REVISED MAY 2009


www.ti.com

ORDERING INFORMATION ⁽¹⁾									
TA	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING						
		Tube of 75	LT1009CD	40000					
	SOIC – D	Reel of 2500	LT1009CDR	- 1009C					
		Bulk of 1000	LT1009CLP						
0°C to 70°C	TO-226/TO-92 – LP	Ammo of 2000	LT1009CLPM	LT1009C					
		Reel of 2000	LT1009CLPR						
		Tube of 150	LT1009CPW	10000					
	TSSOP – PW	Reel of 2000	LT1009CPWR	- 1009C					
	0010 0	Tube of 75	LT1009ID	40001					
	SOIC – D	Reel of 2500	LT1009IDR	- 10091					
		Bulk of 1000	LT1009ILP						
–40°C to 85°C	TO-226/TO-92 – LP	Ammo of 2000	LT1009ILPM	LT1009I					
		Reel of 2000	LT1009ILPR						
		Tube of 150	LT1009IPW	40001					
	TSSOP – PW	Reel of 2000	LT1009IPWR	- 10091					

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

SCHEMATIC

NOTE: All component values shown are nominal.

2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
I _R	Reverse current			20	mA
I _F	Forward current			10	mA
θ_{JA}		D package		97	
	Package thermal impedance ⁽²⁾⁽³⁾	LP package		140	°C/W
			149		
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
т	Operating free air temperature range	LT1009C	0	70	ŝ
ΙA	Γ _A Operating free-air temperature range	LT1009I	-40	85	

SLVS013N-MAY 1987-REVISED MAY 2009

ELECTRICAL CHARACTERISTICS

at specified free-air temperature

PARAMETER		TEST CONDITIONS		T _A ⁽¹⁾	LT1009C			LT1009I			UNIT	
				IA.''	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
			D/PW package	25°C	2.49	2.5	2.51	2.49	2.5	2.51		
Vz	Reference voltage	I ₇ = 1 mA	LP package		2.495	2.5	2.505	2.495	2.5	2.505	V	
٧Z	Reference voltage	$I_Z = 1 \text{ IIIA}$	D/PW package		2.485		2.515	2.475		2.525	v	
			LP package	Full range	2.491		2.509	2.48		2.52		
V _F	Forward voltage	$I_F = 2 \text{ mA}$		25°C	0.4		1	0.4		1	V	
• • • •		$I_Z = 1 \text{ mA},$ $V_{ADJ} = \text{GND to } V_Z$		25°C	125			125				
Adjustment range	Adjustment range	$I_Z = 1 \text{ mA},$ V _{ADJ} = 0.6 V to V _Z - 0.6 V		25 C	45			45			mV	
	Change in reference	D/PW package LP package					5			15		
$\Delta V_{Z(temp)}$	voltage with temperature			Full range			4			15	mV	
	Average temperature					15	25		15	25	ppm/	
αV_Z	coefficient of reference voltage ⁽²⁾	I _Z = 1 mA, '	V _{ADJ} = open	–40°C to 85°C					20	35	°C	
A)/	Change in reference	1 400 4	to 10 m 4	25°C		2.6	10		2.6	6		
ΔV _Z voltage with current		$I_Z = 400 \ \mu A$	$I_{Z} = 400 \ \mu A$ to 10 mA				12			10	mV	
$\Delta V_Z / \Delta t$	Long-term change in reference voltage	$I_Z = 1 \text{ mA}$		25°C		20			20		ppm/ khr	
7	Poforonoo impodonoo	l _ 1 m A		25°C		0.3	1		0.3	1	0	
ZZ	Reference impedance	$I_Z = 1 \text{ mA}$		Full range			1.4			1.4	Ω	

(1) Full range is 0°C to 70°C for the LT1009C and -40°C to 85°C for the LT1009I.

(2) The deviation parameter $V_{Z(dev)}$ is defined as the difference between the maximum and minimum values obtained over the recommended operating temperature range, measured at $I_z = 1$ mA. The average full-range temperature coefficient of the reference voltage (αV_z) is defined as:

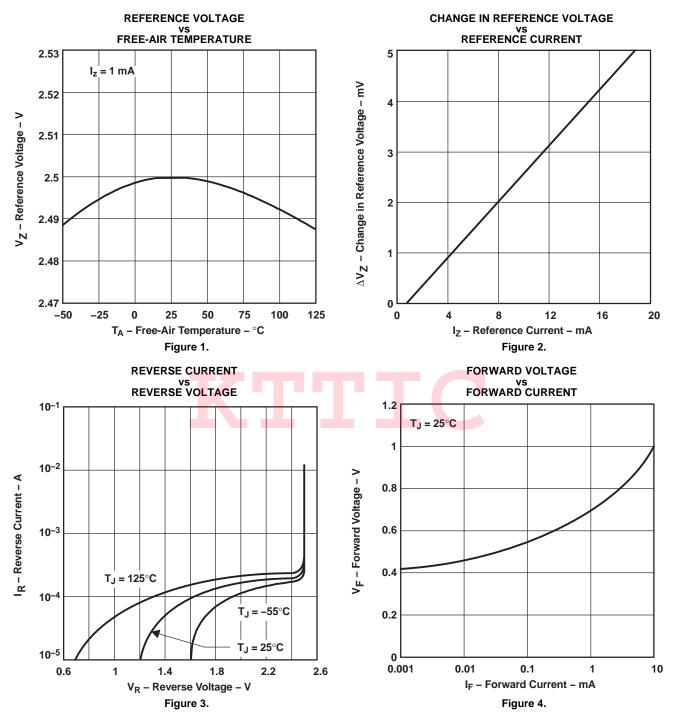
$$\alpha V_{z} \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{V_{z(dev)}}{V_{z} \text{ at } 25^{\circ}C} \right) \times 10^{6}}{\Delta T_{A}}$$
Maximum V_{z}
Minimum V_{z}
Minimum V_{z}
Minimum V_{z}
Minimum V_{z}
Minimum V_{z}

 αV_Z can be positive or negative, depending upon whether the minimum V_Z or maximum V_Z , respectively, occurs at the lower temperature.

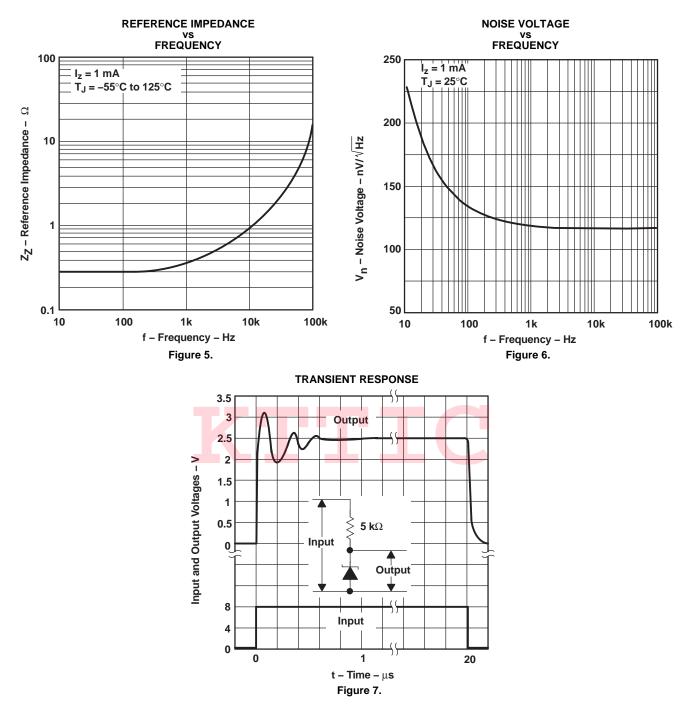
For example, at $I_Z = 1$ mA, maximum $V_Z = 2501$ mV at 30°C, minimum $V_Z = 2497$ mV at 0°C, $V_Z = 2500$ mV at 25°C, $\Delta T_A = 70$ °C for LT1009C:

$$|\alpha V_{z}| = \frac{\left(\frac{4 \text{ mV}}{2500 \text{ mV}}\right) \times 10^{6}}{70^{\circ}\text{C}} \approx 23 \frac{\text{ppm}}{^{\circ}\text{C}}$$

4

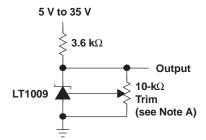

Because minimum V_Z occurs at the lower temperature, the coefficient in this example is positive.

LT1009


TYPICAL CHARACTERISTICS

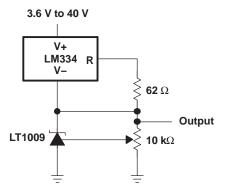
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLVS013N-MAY 1987-REVISED MAY 2009



TYPICAL CHARACTERISTICS (continued)

6



APPLICATION INFORMATION

A. This does not affect temperature coefficient. It provides ±5% trim range.

Figure 8. 2.5-V Reference

Figure 9. Adjustable Reference With Wide Supply Range

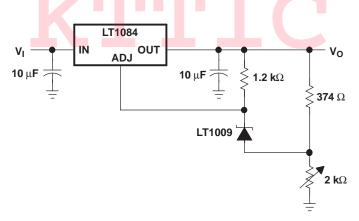


Figure 10. Power Regulator With Low Temperature Coefficient

KTTIC http://www.kttic.com LT1009

www.ti.com

SLVS013N-MAY 1987-REVISED MAY 2009

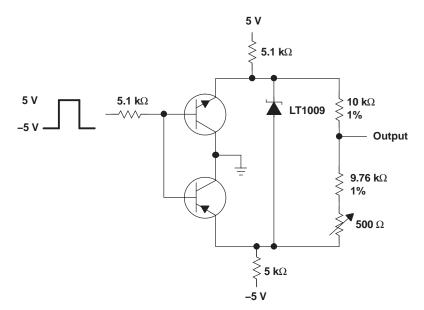


Figure 11. Switchable ±1.25-V Bipolar Reference

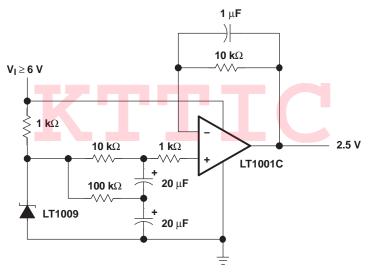


Figure 12. Low-Noise 2.5-V Buffered Reference

8

11-Aug-2009

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LT1009CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CLP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CLPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CLPM	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CLPME3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CLPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CLPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009CPK	OBSOLETE	SOT-89	PK	3		TBD	Call TI	Call TI
LT1009CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CPWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

Texas Instruments

www.ti.com

11-Aug-2009

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LT1009ILP	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009ILPE3	ACTIVE	TO-92	LP	3	1000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009ILPR	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009ILPRE3	ACTIVE	TO-92	LP	3	2000	Pb-Free (RoHS)	CU SN	N / A for Pkg Type
LT1009IPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IPWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IPWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009IPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LT1009QDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
LT1009Y	OBSOLETE	DIESALE	Y	0		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

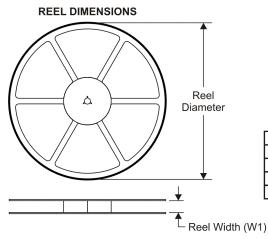
http://www.kttic.com

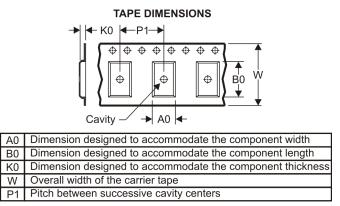
www.ti.com

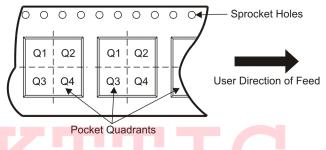
PACKAGE OPTION ADDENDUM

11-Aug-2009

OTHER QUALIFIED VERSIONS OF LT1009 : • Military: LT1009M

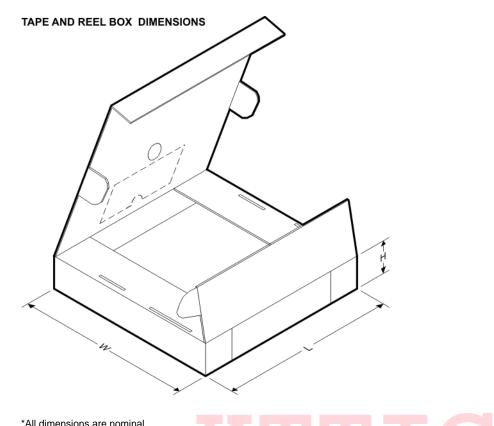

NOTE: Qualified Version Definitions:


• Military - QML certified for Military and Defense Applications


TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

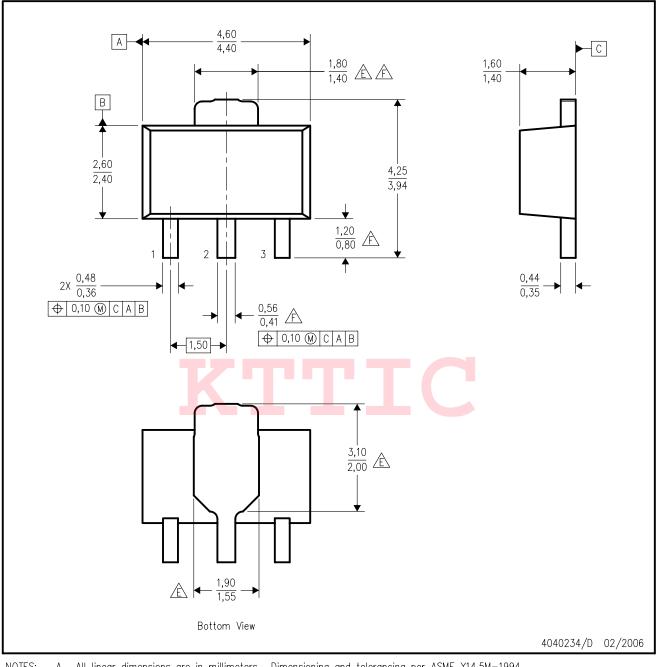
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LT1009CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1009CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LT1009IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LT1009IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

23-Jan-2009

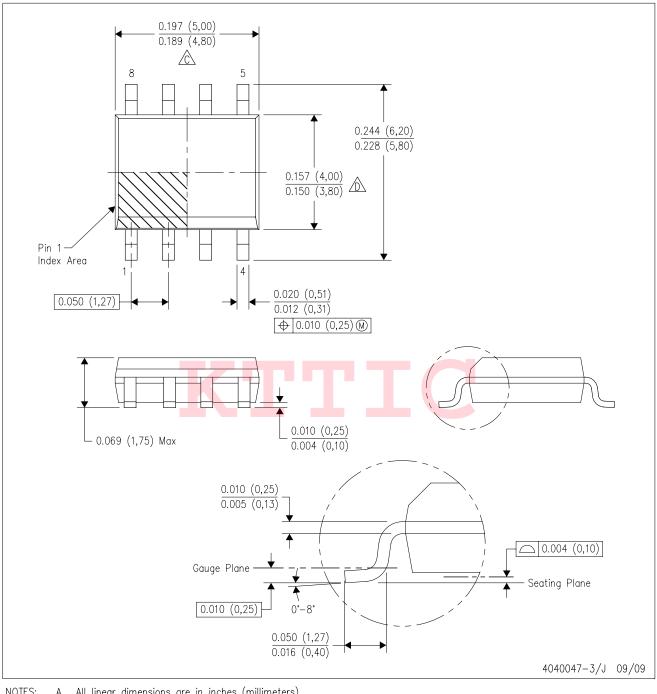


*All dimensions are nominal

All ultrensions are norminal							
Device	Packag <mark>e Typ</mark> e	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LT1009CDR	SOIC	D	8	2500	340.5	338.1	20.6
LT1009CPWR	TSSOP	PW	8	2000	346.0	346.0	29.0
LT1009IDR	SOIC	D	8	2500	340.5	338.1	20.6
LT1009IPWR	TSSOP	PW	8	2000	346.0	346.0	29.0

PK (R-PSSO-F3)

PLASTIC SINGLE-IN-LINE PACKAGE


NOTES:

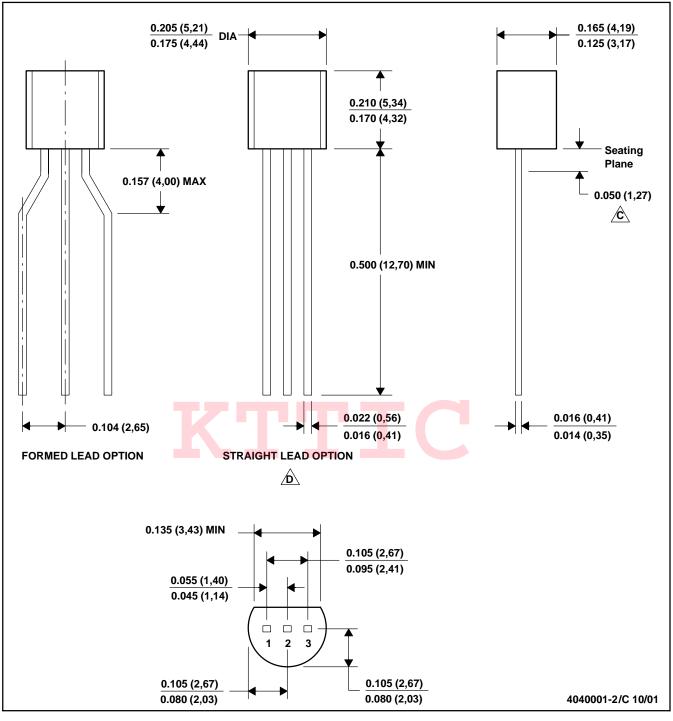
- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.
 - Β. This drawing is subject to change without notice.
 - The center lead is in electrical contact with the tab. C.
 - Body dimensions do not include mold flash or protrusion. Mold flash and protrusion not to exceed 0.15 per side. D.
 - A Thermal pad contour optional within these dimensions.
 - / Falls within JEDEC T0—243 variation AA, except minimum lead length, pin 2 minimum lead width, minimum tab width.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: Α. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- 🖄 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- 🖄 Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.



MECHANICAL DATA

MSOT002A - OCTOBER 1994 - REVISED NOVEMBER 2001

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

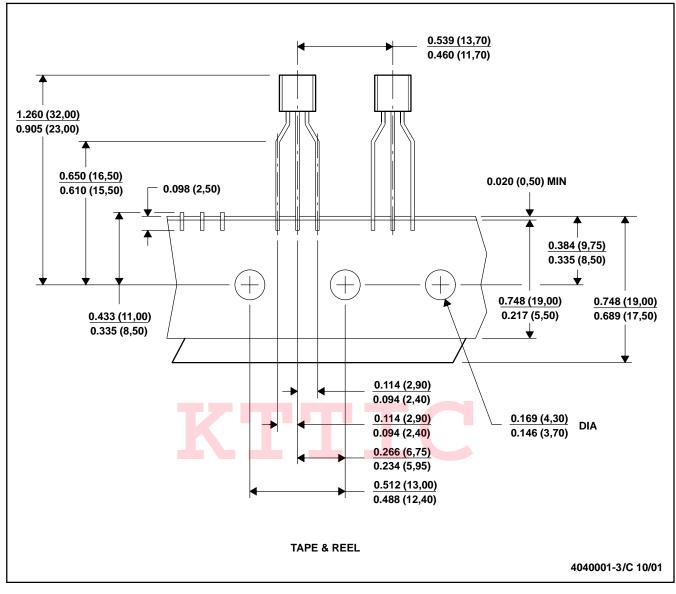
B. This drawing is subject to change without notice.

 \underline{C} Lead dimensions are not controlled within this area

D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:

Straight lead option available in bulk pack only.

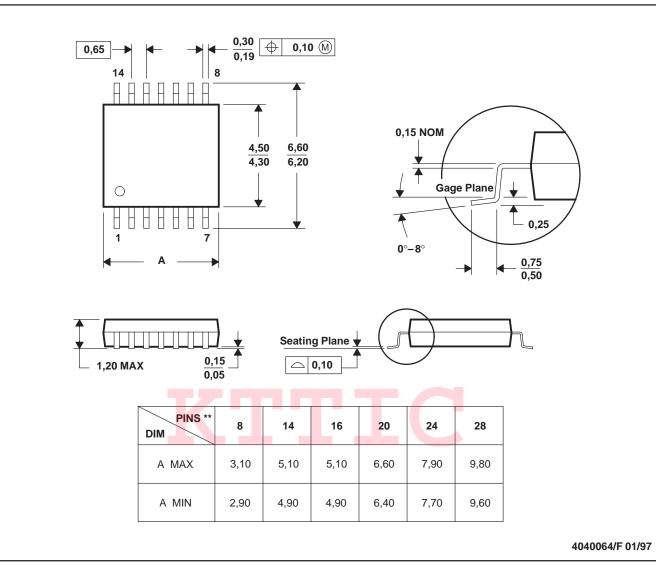

Formed lead option available in tape & reel or ammo pack.

MSOT002A - OCTOBER 1994 - REVISED NOVEMBER 2001

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.


http://www.kttic.com

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

PW (R-PDSO-G**)

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

http://www.kttic.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated